

Light SM Higgs Hunting In Challenging Channels at The Tevatron

Homer Wolfe

The Ohio State University

For the CDF and DØ Collaborations

Summer Higgs Symposium

Ann Arbor, 13 May, 2010

Overview

- The Tevatron Collider, CDF and DØ
- SM Higgs production at the Tevatron
- All jets search
- Searches with taus
- Diphoton searches
- Summary

The Tevatron

 Provides pp collisions at 1.98 TeV to CDF/DØ

Tevatron It seems we just *smashed* our peak luminosity record set just earlier today! Store 7747 initial luminosity = 402 ub^-1/s! WOW! April 16 at 8:46pm via Selective Tweets · Comment · Unlike

C You, Mark Mathis, Charles Plager and 21 others like this.

View all 24 comments

- Setting new luminosity records each week!
 - •Peak inst. L : >400 e-30 cm⁻²s⁻¹ (402 on Apr 16, 2010)
- >8 fb⁻¹ Delivered/Exp.
- >7 fb⁻¹ Acquired/Exp.

DØ and CDF

- Sincon tracking $|\eta| <$
- Fiber tracker
 1.9 T, |η|<1.7
- LAr/DU calor. $|\eta| < 4$
- Muons: |η|<2

- Silicon Tracking $|\eta| < 2-2.5$
- Drift cell Tracker
 1.4 T, |η|<1.1
- Scintillator Cal. $|\eta| < 3.2$
- Muons: |η|<1.5

Producing the SM Higgs at The Tevatron

- Indirect measurements show the SM favors a light Higgs with M_H < ~154 GeV @ 95% CL 114 < M_H from direct searches at LEP
- SM(M_H = 120 GeV) predicts
 ~2 SM Higgs bosons produced each week at the Tevatron.
- Production largest via:
 - •gluon-gluon fusion ~1.2pb
 - •Associated production with a W or Z boson. ~0.2pb
- Total inelastic: ~ 1 barn: Difficult to isolate signal from SM backgrounds

Dominant Decay Modes

bb

- •VH with e, mu in final state (previous talk)
- •Will discuss all-jets, $W \rightarrow \tau \upsilon$
- •BG, reco challenging at LHC

Ditau

- •Many different decay states
- •Important for MSSM Higgs search

Diphotons

- •Low backgrounds, good reconstruction efficiency
- •One of most likely modes for first SM Higgs evidence at LHC 6

Challenging channels for the light SM Higgs search at The Tevatron

- All Channels Discussed Here have sensetivities ~20 >> Combo
 - •Individually don't contribute much (add as \sim inverse S²)
 - •Sum: $20/\sqrt{6} \sim 8.2$ xSM

•Together like a primary channel!

- They create a challenging environment for developing experimental techniques
 - •Can be applied to LHC, other channels

Analysis	L (fb ⁻¹) Analyzed	Expected Sensitivity @MH =115 (xSM)
Tevatron Combo	2.0-5.4	1.78
CDF qqbb	4.0	18
$CDF \ H{\rightarrow}\tau\tau$	2.3	25
DØ H→ττqq	4.9	18.8
DØ WH→τυbb	4.0	22.4
DØ H→γγ	4.2	18.5
CDF H→γγ	5.4	19.4 (@120)

Why Are These Channels Interesting?

- In this talk, we'll avoid the details of the analyses, and focus on particular techniques of each which can be applied to other modes, BSM or to the LHC.
 - •All-jets search
 - Modeling large QCD backgrounds
 - •Searches with τ s
 - •ID techniques for complicated objects (hadronic τ decays)
 - •Higgs decaying to photons
 - •Small signal: expand acceptance
 - •Descriptions of QCD background

The All-Hadronic SM-Higgs search at CDF

- •The Channel
 - •H→bb,
 - •two additional quark jets
 - •VH, VBF
 - •4 or 5 jets ET>15 GeV
 - •<u>exactly two</u> jets are b-tagged
- •The Challenge
 - •Huge QCD backgrounds
 - •Hard to model b-tags
- •Basic Tools
 - •Reduce Ditop
 - •Reject events with leptons
 - •Reject events with MET
 - •Reduce QCD
 - •Require Sum ET > 220 GeV

Estimation of the Double Tag Rate in The All-Hadronic SM-Higgs search at CDF

Large (98% of total) QCD background requires data-based model
Tag rate function (TRF) parameterizes the probability of a double b-tag assuming a single tag

•3D matrix: TRF(Et,eta, dR) = #2Tags/#1Tags

•TRF is measured in signal-free Mbb

Alternate in CONTROL for systematic estimate
Separate TRFs used for the two b-jet tagging categories
Validation

> •Compare Shape of Signal ^{50–} region 2Tags with TRF(1Tags)

Suppression of QCD with Jet Shapes in the All-Hadronic SM-Higgs search at CDF

$$\eta \text{-moment}(\langle \eta \rangle) = \sqrt{\sum_{\text{towers}} \left(\left(\frac{E_t^{\text{tower}}}{E_t^{\text{jet}}} \eta_{\text{tower}} \right)^2 - \eta_{\text{jet}}^2 \right)}$$
$$\phi \text{-moment}(\langle \phi \rangle) = \sqrt{\sum_{\text{towers}} \left(\left(\frac{E_t^{\text{tower}}}{E_t^{\text{jet}}} \phi_{\text{tower}} \right)^2 - \phi_{\text{jet}}^2 \right)}$$

- •QCD Multi-jet background:
- •Mixture of gluon & quark jets•Higgs signal: Only quark jets
- •<u>Gluon jets</u> tend to be <u>broader</u>
- than light flavored quark jets
- Use jet-width to separate gluon & quark jets
- Dependencies upon jet-ET, jetη and number of reconstructed vertices are removed.

Tuning MC Jet Shapes in the All-Hadronic SM-Higgs search at CDF

- Tune MC using q-enriched events tt→bbWW→bblvjj
- •Selected tt data events are:
 - •~86% tt
 - •~14% Wbb+Wcc+others
- •Non b-jets are quark jets from W decay
- •After performing corrections to the MC, the two agree well

Moments become inputs to discriminant NNs

SM Higgs searches with τ leptons

- The Channels
 - •H $\rightarrow \tau\tau$, ZH(Z or H $\rightarrow \tau\tau$)
 - •WH(W $\rightarrow \tau \upsilon$)

• The Challenge

•Difficult ID

•Multiple decay modes

•Hadronic taus <u>are</u> jets, albeit narrow ones with mostly 1,3 tracks

- •Complicated definition \rightarrow QCD jet fake estimates hard
- •Difficult reconstruction
 - •Only part of energy visible

SM H→ττ search at CDF: Boosted Decision Tree ID

- Require
 - •1 leptonic tau, 1 hadronic tau (~46%) total
 - 1 or 2 additional jets

•0 jets is enriched w/DY \rightarrow control region

Identify hadronically decaying taus using a BDT

- •Trained: loose tau-cut samples of MC signal, jet data
- •Sub-select training samples to flatten visible En dist.
- •Estimate signal acceptance uncertainty by selecting subranges in visible transverse energy

•Analysis with ID BDT adds 10-40% sensitivity with same lumi!

ID BDT Acceptance Uncertainty in SM H→ττ search at CDF

• Njet Signal, sideband definition allows control of DY, Fakes, but causes reliance on JES-> Dominant systematic

NN ID Background Acceptance SM H→ττ searches at DØ

•Search in the $\tau\tau qq$ final state: •ZH, $Z \rightarrow \tau^+\tau^-$, $H \rightarrow qq$ •HZ, $H \rightarrow \tau^+\tau^-$, $Z \rightarrow qq$ •HW, $H \rightarrow \tau^+\tau^-$, $W \rightarrow qq$ •qq \rightarrow Hqq, $H \rightarrow \tau^+\tau^-$ •gg \rightarrow H, $H \rightarrow \tau^+\tau^-$, additional 2jets

•One tau required to decay into a μ , the other hadronically

•3 decay modes, each treated separately

•NN trained on DY OS vs SS $\tau\mu$ candidates

•Selection requirement for high NN output •QCD sample selected requiring muon anti-isolated and tau NN output is in mid-range ~95% QCD, the rest largely non-tau SM

•Additionally Measure N(OS)/N(SS) in this sample, apply to signal region SS for alternative description

Resultant Limits from SM H $\rightarrow \tau \tau$ searches at The Tevatron

•Both Analyses use multiple specialized BDTs for signal discriminant

- trained signal vs. different BG types (CDF)
- trained background vs different MC signal types (DØ)
- •Expected Limits: •CDF: 21-75 (2.3fb-1)
 - •DØ: 15-71 (4.9 fb-1)

WH→τυbb search at DØ

•Require one hadronic tau, two jets, MET > 15 GeV

•Similar to DØ $H \rightarrow \tau\tau$ search, a NN is used to identify hadronically decaying taus of two decay categories

> •Signal ONN "high" •~65% efficient

•Orthogonal Data samples used to reweight MC

•A QCD sample is also selected using ONN in "medium score", +low MET significance

•A QCD depleted sample is selected by requiring MET>80, simulates SM backgrounds

WH $\rightarrow \tau \nu bb$ search at DØ

- •Additionally improve s/b by requiring either one very tight b-tag, or one tight and one loose tag of the two jets in the event
- •A BDT is trained to separate signal from all MC backgrounds (not QCD)

Light Higgs Searches to Diphotons

The Channel

•Sample of inclusive diphotons

General Strategy

•Parameterize or subtract reducible/irreducible background, excluding a signal window (s/b ~.2%)

•Fit for a signal on top of the extrapolated background or residual in the signal window

The Challenge

•Small cross section $Br(h \rightarrow \gamma \gamma) < .25\%$

•Maximize acceptance

- •Estimate jet fakes in signal
- •Understanding of MC/Data Acc.

DØ Search for Diphotons: Data Derived Estimate of Non-photon BG

Employ a Neural Network for ID

•trained on Jet vs. Photon MC

•validated with $Z \rightarrow ll + \gamma$ data

- Reject all candidates w NNout low
- Separate candidates between
- ONN in midrange and high
 - •Splits events into 4 categories

•Pass, fail x2 candidates

- •Using 4x4 efficiency matrix, derive the number of events from $\gamma\gamma,\gamma j,j\gamma,j j$. (Norm only)
- Shape from data ONN low sample

Comparing Diphoton searches to Other Channels

Signal Expectation (CDF):

 \approx 16 events produced with 5.4 fb⁻¹ of data

 \approx 2 events after acceptances and efficiencies included

Compare at MH = 120	Lumi	s/b	Expected #Events	Expected Limit	Observed Limit
CDF (High) ZH->llbb	4.3	~0.5%	~2.5	8.49	7.89
CDF H→γγ	5.4	~0.2%	~2	19.4	22.5

CDF (High)

ZH->llbb here refers to only the "high s/b" lepton categories (all tags) of the CDF llbb analysis.

s/b refers to the total channel, s/b in the highest bins of the discriminant is far higher >20%

Expected Limits for MH:	140	150
CDF (High) ZH->llbb	19.27	73.72
CDF H→γγ	25.5	38.6

Comparing Diphoton searches to Other Channels

Summary

- The Tevatron is delivering luminosity at record rates
- CDF and DØ are conducting Light SM Higgs searches in every viable channel
 - •Maximizing acceptance while managing backgrounds
 - •Developing techniques which can be used at CMS/ATLAS for
 - •Tau ID (MSSM Higgs)
 - •Photon ID (Light SM Higgs)
 - •QCD background estimates (Light SM Higgs)
- The Light SM Higgs searches at DØ/CDF are rapidly improving!

Thank You For Your Attention

Questions?

